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We study applications of QCD soft-gluon resummations to electroweak annihilation 
cross sections. We focus on a formalism that allows to resum logarithmic corrections 
arising near partonic threshold and at small transverse momentum simultaneously. 

1. INTRODUCTION 

When probed near an exclusive boundary of phase space, perturbative partonic hard- 
scattering cross sections for electroweak-boson (?*, W, Z, H) production acquire large 
logarithmic corrections arising from incomplete cancellations of soft-gluon effects between 
virtual and real diagrams. The two prominent examples are threshold and recoil correc- 
tions. The former are of the form a: ln2n-1 (1 - z ) / (  1 - x) and become large when the par- 
tonic c.m. energy approaches the invariant mass Q of the produced boson, x = Q2/S -+ 1. 
The recoil corrections, in turn, are of the form a~ln2"-'(Q2/Q$) and grow large if the 
transverse momentum carried by the produced boson is very small, QT << Q. Therefore, 
sufficiently close to the phase-space boundary, i.e. in the limit of soft and/or collinear ra- 
diation, fixed-order perturbation theory is bound to fail. A proper treatment of the cross 
section requires resummation of the logarithmic corrections to all orders. The techniques 
for this are well established in both the threshold [1,2] and in the recoil 13-61 cases. 

Resummation of recoil and threshold corrections, however, is known to lead to opposite 
effects - suppression and enhancement of the partonic cross section, respectively. A full 
analysis of soft gluon effects in transverse momentum distributions da/dQ2 dQ$ should 
therefore, if possible, take both types of corrections simultaneously into account. A joint 
treatment of the threshold and recoil corrections was proposed in [7,8]. It relies on a novel 
refactorization of short-distance and long-distance physics at  fixed transverse momentum 
and energy [8]. Similarly to standard threshold and recoil resummations, exponentiation 
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of logarithmic corrections occurs in the impact parameter b space, Fourier-conjugated to 
transverse momentum QT space, and Mellin-N moment space, conjugated to x space. 
This time both transforms are present, resulting in a final expression which obeys energy 
and transverse-momentum conservation. Consequently, phenomenological evaluation of 
the joint resummation expressions requires prescriptions for inverse transforms from both 
N and b spaces. This issue is also closely tied to specifying the border between resummed 
perturbation theory and the nonperturbative regime, through analysis of the nonpertur- 
bative effects implied by the resummation formula itself. Moreover, to fully define the 
expressions a procedure for matching between the fixed-order and the resummed result 
needs to be specified. A full phenomenological study of the joint resummation formalism 
as applied to vector boson production was undertaken in [9]. The formalism may also 
be applied to Higgs production via gluon-gluon fusion [lo]. In this case the Higgs-gluon 
interaction proceeds through a top quark loop and may, for mt > mh, be replaced [Ill by 
a simple effective g g h  vertex. In the following we will briefly discuss our results for joint 
resummation as applied to eletroweak-boson production. 

2. THE JOINTLY RESUMMED CROSS SECTION 

In the framework of joint resummation, the resummed e1ectrowea.k annihilation cross 
section has the following form [8,9]: 

x G/A (Q, b, N, P, PF) exp [E:? (N, 4 Q,  P)  ] G/B (Q, b, N, P, PF)  , (1) 

where o:'')(Q2) denotes a perturbative normalization that only depends on the large invari- 
ant mass Q of the produced boson [9,10]. We have defined r = Q2/S. The flavor-diagonal 
exponent E:: was derived in [9] to next-to-leading logarithmic (NLL) accuracy: 

It has the classic form of the Sudakov exponent in the recoil-resummed QT distribution 
for electroweak annihilation, with the A and B functions defined as perturbative series 
in Q, [3-61. The quantity x(N,  b) organizes the logarithms of N and b in joint resumma- 
tion [9]: 

where we define N = NeTE, 6 = bQeYE/2, with yE the Euler constant. With this choice for 
x(N,b) the LL and NLL terms are correctly reproduced in the threshold limit, N + 00 

(at fixed b) ,  and in the recoil limit b + 00 (at fixed N ) .  
The coefficients in the expansions of the functions in (2) are the same as in the pure 

QT resummation and are known from comparison with fixed-order calculations [12-151 
for both vector-boson and Higgs production. At NLL only A(1), and A(2) contribute, 
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BF) = - -CF,  = -- (11c~ - ~ T R N F )  . 

The second-order term BPI contributes only at NNLL level. It was noted in a previous 
study on QT resummation for Higgs production [16] that the contribution from BPI is 
actually numerically rather significant due to the size of CA, and we therefore include it 
in our study despite the fact that it is subleading to our analysis. We also note that there 
is an interplay [17] between BF), the function &')(Q2)  above, and the coefficients C a / ~  to 
be specified below; for details, see [17]. We will use in the case of Higgs production [15,17] 

The functions C(Q,  b, N ,  p, p ~ )  in Eq. (1) are given as: 

c u / H ( Q ,  b, N ,  P, P F )  = c u / j  (N, a s ( P ) )  Ejk (N, Q/X, P F )  f k / ~ ( N ,  P F )  - (6) 
j,k 

They are products of parton distribution functions f k / H  at scale p ~ ,  an evolution matrix 
€ j k ,  and coefficients C,/j(N, a,) which are perturbative series in a,. Explicit expressions 
for the latter are given in [9,10]. The matrix € (N, Q/x ,  p ~ )  represents the evolution of 
the parton densities from scale p~ to scale Q / x  up to NLL accuracy [9] in 1nN. By 
incorporating full evolution of parton densities the cross section (1) correctly includes the 
leading a! 1n2"-l(N)/N collinear non-soft terms to all orders. Such terms were previously 
addressed in [18]. In fact, due to our treatment of evolution, expansion of the resummed 
cross section (1) in the limit N + 00, b = 0 gives all @ ( l / N )  terms in agreement with 
the @(a,) result. Further comparison can be undertaken in the limit b -+ 00, N = 0 
when our joint resummation turns into standard QT resummation. Also, a numerical 
comparison [9,10] between the fixed-order and the @(a,)-expanded jointly resummed 
expression for da/d&T at shows very good agreement, especially at small QT. 

3. INVERSE TRANSFORMS AND MATCHING 

The jointly resummed cross section (1) requires defining inverse Mellin and Fourier 
transforms so that singularities associated with the Landau pole are avoided. A contour 
for the Mellin integral in (1) is chosen in analogy with the 'minimal prescription' contour 
in threshold resummation [19]: 

N = C + ze*@ (7) 
where the constant C lies to the right of the rightmost singularity of the parton distribution 
functions but left of the Landau pole. 

The inverse Fourier integral from b space also suffers from the Landau singularity. We 
define this integral with a similar strategy. We first use the identity 

/ d 2 b e i $ ' f ( b )  = 2n Srn dbb Jo(bq) f ( b )  = n . I rndbb  [ h l ( b q , w ) + h 2 ( b q , v ) ]  f ( b ) ,  ( 8 )  

and employ Cauchy's theorem to deform the integration over real b into a contour in the 
complex b plane [7,9]. Here the auxiliary functions h1,2 are related to Hankel functions. 
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They distinguish between the positive and negative phases in Eq. (8). The b integral can 
thus be written as a sum of two contour integrals, over the integrand with hl (h2) along a 
contour in the upper (lower) half of the b plane. The precise form of the contours becomes 
unimportant as long as the contours do not run into the Landau pole or into singularities 
associated with the particular form (3) of the function x. Our treatment of contours in 
complex transform b-space is completely equivalent to the original form, Eq. (8), when 
the exponent is evaluated to finite order in perturbation theory. In the presence of the 
Landau pole arising in the resummed formula, it is a natural extension of the N-space 
contour redefinition above [19], using a generalized “minimal” exponent. We emphasize 
that joint resummation with its contour integration method provides an alternative to the 
standard b space resummation. Joint resummation has built-in a perturbative treatment 
of large b values, eliminating the need for a b, or other prescription for the exponent, or 
for a freezing of the scale of parton distributions at large b or low QT. In this way, we can 
derive entirely perturbative resummed cross sections. 

In the joint resummation we adopt the following matching prescription between the 
resummed and the fixed-order result: 

. 

where doreS/dQ2dQ$ is given in Eq. (1) and doexp(k)/dQ2dQ$ denotes the terms resulting 
from the expansion of the resummed expression in powers of as(p) up to the order I% 
at which the fixed-order cross section dofixed(’))ldQ2dQ; is taken. The above matching 
prescription in ( N ,  b) space guarantees that no double counting of singular contributions 
occurs in the matched distribution. 

4. NUMERICAL RESULTS 

Joint resummation predictions for 2 boson production compared with the latest CDF 
data from the Tevatron collider [20] are shown in Fig. 1. Fig. 2 shows our results for the 
jointly resummed cross section for the production of a 125 GeV Higgs boson at the LHC. 
Due to the contour integral prescription for performing inverse transforms, in the frame- 
work of joint resummation one does not require any extra nonperturbative information 
to obtain predictions. This is not the case in the standard QT resummation formalism, 
where nonperturbative parameters are introduced to make the theoretical expression well 
defined. 

As shown by the dashed line in Fig. 1 the joint resummation without any extra nonper- 
turbative input already provides a good description of the data for 2 production, except 
for the region of very small Q T ,  where the nonperturbative effects are expected to play a 
significant role. However, the form of the nonperturbative input can be predicted within 
the joint resummation by taking the limit of small transverse momentum of soft radia- 
tion in the exponent, Eq. (2). Assuming moderate threshold effects the procedure gives 
a simple Gaussian parametrization F ~ p ( b )  = exp(-gb2). The value of the parameter 
g = 0.8GeV2 is determined by fitting the predicted distribution to the data. It is very 
similar to the value obtained in Ref. [21], where an extrapolation of the exponent to large 
b was carried out for the &*-resummed cross section. The solid line in Fig. 1 represents 
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predictions including the nonperturbative parametrization. In the large QT region, see 
Fig. lb ,  the joint resummation formalism with the matching prescription (9) also returns 
a very good description of data without requiring an additional switching to a pure fixed- 
order result, unlike in the standard QT resummation formalism. Nevertheless, at large 
QT,  no formalism based on the resummation of Sudakov logarithms can be expected to 
incorporate all relevant contributions, particularly at small x. The relations between QT 
resummation and threshold and joint resummation in the context of Higgs production at 
the LHC should shed light on this issue. 
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Figure 1. CDF data [20] on 2 production compared to joint resummation predictions, 
without nonperturbative smearing (dashed) and with Gaussian smearing (solid, see text). 
The dotted line shows the fixed-order result. The normalizations of the curves (factor of 
1.035) have been adjusted in order to give an optimal description. We use CTEQ5M [22] 
parton distribution functions, ,u = p~ = Q and $ = 4; = 25/321r, C = 1.3, b, = 0.2/&. 
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Figure 2. Transverse momentum distribution for Higgs production at the LHC in the 
framework of joint resummation. We have not implemented any nonperturbative smear- 
ing. Parton distributions and other parameters are as in Fig. 1. 
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